2022考研数学:线性方程考点

2021-07-26 11:13点击次数:317

  考研数学部分的高分成绩,离不开大家日常的复习备考。在具体的复习中,这部分应该怎么备考?华慧考研小编为考生整理了详细的内容,供大家参考!

  1、非齐次线性方程组解的结构及通解;

  2、齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法;

  3、齐次线性方程组有非零解的充分要条件,非齐次线性方程组有解的充分要条件;

  4、矩阵初等变换的概念,初等矩阵的性质,矩阵等价的概念,矩阵的秩的概念,用初等变换求矩阵的秩和逆矩阵;

  5、向量、向量的线性组合与线性表示的概念;

  6、用初等行变换求解线性方程组的方法;

  7、基变换和坐标变换公式,过渡矩阵。(数一)

  8、向量空间、子空间、基底、维数、坐标等概念;(数一)

  9、向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法;

  10、向量组的极大线性无关组和向量组的秩的概念和求解;

  11、向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系;

  矩阵的特征值特征向量与二次型相当于是求解线性方程组的应用,出题比较灵活,有些题目技巧性较强,复习起来也是比较有意思的一章。在考试中也是比较容易出大题的内容。

  其中我们应当掌握

  1、规范正交基、正交矩阵的概念以及它们的性质;

  2、内积的概念,线性无关向量组正交规范化的施特(Schmidt)方法;

  3、矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量;

  4、实对称矩阵的特征值和特征向量的性质;

  5、相似矩阵的概念、性质,矩阵可相似对角化的充分要条件,将矩阵化为相似对角矩阵的方法;

  6、二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理;

  7、正定二次型、正定矩阵的概念和判别法。

  8、正交变换化二次型为标准形,配方法化二次型为标准形。

      考研英语线上培训班哪个好?当然选【华慧考研】!这里有海量考研真题资料、配套的考研英语辅导书,更有专门的辅导老师一对一辅导,让你研途不再迷茫!点击下方图片链接了解详情,也可联系客服,在线为您答疑~

考研英语专业辅导
辅导课程
考研精品辅导课程 课程简介 课时 学习费用 免费试听 立即报名
考研全程班 考研教程班
首页 关于华慧 联系我们 支付方式 |

服务热线:400-622-4468  北京华慧东方网络科技有限公司  版权所有  Copyright © 2014-2022

北京市房山区拱辰街道东关村良乡东路1号-15  kaoyan.b2cedu.com  京ICP备09021372号

京公网安备 11010502043647号